H(t)=-16t^2+140t+3

Simple and best practice solution for H(t)=-16t^2+140t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+140t+3 equation:



(H)=-16H^2+140H+3
We move all terms to the left:
(H)-(-16H^2+140H+3)=0
We get rid of parentheses
16H^2-140H+H-3=0
We add all the numbers together, and all the variables
16H^2-139H-3=0
a = 16; b = -139; c = -3;
Δ = b2-4ac
Δ = -1392-4·16·(-3)
Δ = 19513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-139)-\sqrt{19513}}{2*16}=\frac{139-\sqrt{19513}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-139)+\sqrt{19513}}{2*16}=\frac{139+\sqrt{19513}}{32} $

See similar equations:

| p-5p=20 | | 9/10x-3=3/5 | | 10+7=x=8+5+10 | | p/12−2/3=5/144 | | 5n+2=3n+6-2n | | -10.2+x=-8.14 | | 2/4y-3/4y+5=0 | | H(1)=x-3 | | -10y+18=-15y-21-8 | | -y+241=19 | | 60x=55x+40 | | H(3)=x-3 | | 8+7x−x²=0 | | 1/2y-3/4y+5=0 | | 12+6x=200 | | G(2)=-4x | | 5y+1/5=6y+7/5 | | 1–9g=-10g+8+3 | | 2d+4=-6+3d | | G(-6)=-4x | | c/2+8=32 | | 7(2-3v)=140 | | 7-10y=-9y | | 6x9=54 | | 7p+0.50=12 | | 3x+12=2(x-2)=3x+2 | | -2=3y–18–5y | | -1-k=-4-2K+6 | | 2+y÷9=3 | | 11x-6+10x=180 | | 3(45)-+5)+(5y-50)=180 | | 2q=-2+4q |

Equations solver categories